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It is shown that in a flow with a nonuniform voriicity, the concentration field of the suspen- 
sion is also nonuniform. Stationary Couette and Poiseuille flows in a fiat gap and in a capri- 
lary are examined in detail. 

It is well known that when a suspension of fine particles flows in a channel, there is a redistribution 
of particles over the cross section of the channel, as a result of which an inhomogeneous concentration dis- 
tribution of the suspension forms in the flow (see, for example, [1-3]). The latter has a large effect on the 
observed properties of the flow, for example, on the values of the effective viscosity, measured in capil- 

laries with viscosimeters. 

At the present time neither the detailed characteristics of stationary concentration distributions, es- 
tablished under different conditions, nor the fundamental methods for determining them experimentally, nor 
even the basic physical reasons responsible for the formation of structure are known. To explain this forma- 
tion from a qualitative point of view, assumptions are usually made about transverse migration of individual 
particles in nommiform shear flows, i.e., the so-called Segre-Silberberg effect [4], as well as about the in- 
teraction of particles with the wails bounding the flow. The indicated migration is due to the influence of 
inertial effects leading to the appearance of a "lifting" force acting on a single particle and proportional to the 
vector product of its angular rotational velocity and its translational velocity relative to the fluid (see the re- 
views in [3, 5] and the references therein). However, arguments of this kind are not directly applicable to 
flow of a suspension, since they do not take into account the collective interaction of the system of suspended 
particles and, in particular, the screening effect of all particles on any isolated particle. In addition, dis- 
tinct structure formation also occurs when the average phase velocities of the suspension coincide, i.e., the 

lifting forces generally vanish [i, 3]. 

The known attempts to describe the real velocity and concentration profiles in one-dimensional station- 
ary flows of suspensions have the typical phenomenological character. They are usually based on postulation 
of some extremal principle (for example, principle of minimum dissipation of energy in the flow [6, 7]) or 
they are related to a priori and, generally speaking, unjustified introduction of an asymmetric effective 
stress tensor, as well as reversible and irreversible processes of aggregation, diffusion, and so on using 

the methods of linear thermodynamics of irreversible processes [8, 9]. 

In what follows, the formation of structure in a suspension with a nonuniform shear flow is examined 
using the general continuum mechanics of concentrated dispersed systems, developed in [10-12]. For simpli- 
city, the analysis is restricted to stable uniform-density suspensions of identical fine spherical particles in 
the absence of aggregation and any inertial and fluctuation effects. In addition, it is demonstrated that the 
basic physical mechanism for the formation of structure may not be related to such effects at all, but rather 
to the necessity of conserving the internal angular momentum of the continuous phase of the suspension, which 

must be viewed as a completely independent property of the flow [13]. 

Equations and Boundary Conditions. The system of equations for conservation of mass, momentum, 
and angular momentum of the continuous and dispersed phases of the suspension, which we assume to be in- 
compressible and examine as coexisting interpenetrating continua, are formulated in [10-12]. These equa- 
tions serve to determine the bulk concentration of particles, the pressure of the dispersed medium, the 
average phase velocities of the suspension and their angular momenta (for the discrete phase, the internal 
angular momentum is proportional to the angular velocity of the particles). Here we examine only one- 
dimensional stationary flows, in which all of these quantities, except for the pressure, are independent of 
time and the coordinate x in the direction of motion, while Vp is constant and oriented along x. Iftheparticles 

A. M. Gor'kov Ural State University, Sverdlovsk. Translated from Inzhenerno-Fizicheskii Zhurnal, 
Vol. 44, No. 4, pp. 591-601, April, 1983. Original article submitted December I0, 1981. 

0022-0841/83/4404-0399507.50 �9 1983 Plenum Publishing Corporation 399 



have zero buoyancy, then, neglecting the influence of the interphase interaction forces on the conservation of 

angular momentum [10-12], the influence of the external mass field can be neglected, since the external forces 
can be easily included in the effective pressure. If the quantity IVpl is not very large, we can restrict the 
analysis to the single-velocity model, according to which the phase velocities are identical, which is supported 
by observations [i, 3]. We also assume that there are no external force couples. Then the equations of con- 
servation are considerably simplified. The equation of conservation of momentum of the suspension as a whole 
and the equation of conservation of angular momentum of its continuous phase assume the form 

V . o = O ,  V.7--O,  ~ = - - p l - b 2 ~ 0 M ( p )  e{c}, 

1 I Oc, Oc, II = 2a'~opr (p) e {rot c}, e {c} = -~-  ~ + ~ II' 
(1) 

where M{p) and F(P) are  monotonically increas ing functions equal to unity at p = 0 and the opera tor  V involves 
differentiation only with respec t  to the t r a n s v e r s e  coordinates .  In addition to Eqs. (1), in the case examined, 
the equation of conservat ion of internal angular  momentum of the d ispersed phase,  which must  be used to de- 
te rmine  the angular velocity of the par t i c les ,  is also not an identity; we shall not examine this equation here.  

For  modera te ly  concentrated suspensions (p < 0.20-0.25), the quantities M and F were calculated based 

on the method [10-12] in [14]: 

F (p) = 34 (p) = (1 - -  5p/2) -i, (2) 

and for  suspensions with high concentrat ion,  numer ica l  calculations of M are  available for  different fo rms  of 
the binary par t fcte  distribution function [15]. In what follows, we shall use the well-known simple approxima-  

tion 

F (p) : M (p) : (1--9) -5/2 , (3) 

c lose  to (2) f o r  suspens ions  w i t h  mode ra te  concen t ra t i on ,  but not  hav ing  i n  con t ras t  to (2) s i n g u l a r i t i e s  in  the 

i n t e r v a l  0 -< p < 1. 

For  flows of the type examined, the equation of conservat ion of internal angular momentum of the conti-  
nuous phase,  charac ter iz ing  the intensity of local c i rcu la tory  motions of the dispersed phase due to rotation 
of the par t i c les ,  essent ial ly  becomes degenerate in the sense that this moment itself does not enter  into the 
indicated equation. For  this reason,  the la t ter  c i rcumstance  provides  some additional relat ion,  imposed on 
the velocity and concentrat ion fields. We emphasize  that both equations in (1) are  completely equivalent and, 
as will be shown in what follows, without the second equation in (1) it is impossible to explain the formation 
of s t ructure  of a suspension just as without the analogous equation it is impossible  to descr ibe ,  for  example,  

the well-known gyromagnet ic  effect [13]. 

(0) 

q~ 

/ 

25 

\ 

\ r Q 
/ b ) !  

/~/ : 77--  

/ / r  / .-"/I i 

_1 
0 2~ P~0 

Fig. 1. Average volume concentrat ion <p> and dimen- 
s ionless  distance f rom the wall to the closely packed 
core  ~. and 1 - ~ .  (for a two-dimensional  and ax i sym-  
met r ica l  p rob lems ,  respectively)  (a) and two dimension-  
less  v iscosi ty  (b) as a function of the par t ic le  concen-  
t rat ion at the watt Pw; the continuous curves  are  for  a 
flow in a capi l lary and the dashed curves  are  for a l low 
in a flat gap; the point show the function ~e/]~0 = (i - 
pw)-5/2, 1-3) m~ = 0; 0.1 and 0.2; p ,  = 0.50. 
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In mechanics of suspensions, the equations of conservation of internal angular momenta of phases (or 
conservation of angular momenta), first rigorously obtained in [I0], are usually not taken into account. (The 
only example of the effective use of these equations known to the author occurs in [16], where the formation 
of structure in a flow of a dilute suspension of spherical magnetic dipoles in an external magnetic field was 
investigated.) Instead, attempts are often made to include the influence of internal vorticity on the average 
(observed) characteristics of the flow by introducing into the effective stress tensor an antisymmetrical part 
[8, 17-19]. As shown in [Ii, 12], by averaging over the configuration ensemble of the system of particles in 
the dispersed phase, such attempts are inadequate. 

For the necessary conditions that must be imposed on the solution, we shall use the conditions following 
from the requirement of symmetry of the flow examined as well as the double inequality 0 -< p ~ p,. On solid 
walls, a boundary condition of the third kind must be given for the tangential component of the velocity. This 
condition appears due to the impenetrability of the walls for solid particles and the resulting formation of a 
layer with thickness of the order of a near the wall, in which the concentration rapidly drops from Pw at its 
outer boundary to zero at the wall itself [12]. We have 

de 
c = } ~ a - ~ n ,  n = O, k~  = ~ (p~), (4) 

where  n i s  the coo rd ina t e  m e a s u r e d  f r o m  the wal l  a long the n o r m a l  to it. 

If the indicated thin layer is modeled using the idea that there is a layer of thickness ma filled with a 
pure dispersed medium and separating the wall from the suspension itself, then it can be shown that 

k~ = m (Mto - -  I), M~ = M (9~). (5) 

The relations presented are sufficient to analyze the formation of structure in flows of the type examined 
with negligibly low interphase slipping velocities. 

Couette Flow. In this case, Eqs. (I) aftera single integration assume the form (here and in what follows 
we set M = F in accordance with (2) or (3)) 

M (P) de d~c - - = c ~ ,  9 M ( 9 ) - - = 1 6  , (6) 
dy dg 2 

where c~ and/3 are integration constants. Eliminating c, we have from (6) 

d_p ~ ~ M , M' = _dM (7) 
dy ~ pM' d9 

Equation (7) has a single-parameter family of solutions, satisfying the condition p(0) = Pw; if we use 
Eq. (3), then it is determined in implicit form by the relation 

In 1 - - 9 ~  (9- -9~)  2 ~ y. (8) 
1 - -  9 5 

$ The inadequate understanding of the possible ways to take into account and describe internal v orticity in 
flows of both single-phase and dispersed systems, unfortunately, is very widespread, which is indicated, in 
particular, by the discussion in [20,21], raised again by Nikolaevskii et ai. [17, 18]. For this reason, it is 
useful to stop here to consider this in greater detail. The conclusion that there exists antisymmetrical stres- 
ses follows automatically if in obtaining the equations for the macroscopically observed motion by averaging 
with respect to spatial objects it is assumed that the results of averaging over areas differs from the result 
obtained by averaging over a small physical volume and, moreover, depends on the orientation of the areas. 
Actually, this conclusion is a direct result of the indicated hypothesis. Using the procedure of spatial aver- 
aging, it is impossible to determine the degree to which this hypothesis is valid in principle and for this rea- 
son discussions of whether or not antisymmetrical stresses are present in the flow is a clear example of pseu- 
doscientific scholastics. However, a unique negative answer to this question can be obtained using the more 
general procedure of ensemble averages. As demonstrated in [ii, 12], a~tisymmetricai stresses in suspen- 
sions of spherical particles appear only in the presence of external force couples acting on the particles. 
$ This method is presented in detail in the following preprint: Yu. A. ]3uevich, ]3. S. Endler, and I. N. Shchel- 
kova, "Continuum mechanics of monodispersed suspensions. Rheologicai equations of state, " Preprint No. 85, 
Institute of Applied Mechanics, Academy of Sciences of the USSR, Moscow (1977). 
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Fig.  2. Concen t r a t ion  (a) and ve loc i ty  (b) p r o f i l e s  f o r  
f low in a p l ana r  gap:  1-4) P w  = 0.1; 0.2; 0.3; and 0.4; 
p ,  = 0.50. 

F r o m  the  s y m m e t r y  of  the flow re la t ive  to the cen t ra l  p lane  y = h, it is  evident  tha t  the funct ion  O (Y) 
m u s t  be s y m m e t r i c a l  r e l a t i ve  to the  point  y = h, i . e . ,  it  is  n e c e s s a r y  to a s s u m e  tha t / /  = 0; then p = <p > = 
coas t  and s t r u c t u r e  f o r m a t i o n  does  not  o c c u r .  P h y s i c a l l y  th i s  i s  comple t e ly  unders t andab le  b e c a u s e  in the 
usuaI  s imple  shea r  flow (with p -= <p >) the vor t i c i ty  f ieId by defini t ion is un i fo rm,  so that  the t e n s o r  of  a n -  
g u l a r  s t r e s s e s  7 van i shes ,  while the  second  equat ion in (1) is  an identi ty.  (The concen t r a t ion  f ield d e s c r i b e d  
fo r  fi e 0 by the  funct ion p (Y) f r o m  (8) in the r eg ion  0 -< y < h and i ts  even cont inuat ion into the r eg ion  h -< y -< 
2h is  not  a solut ion of Eq. (6) with cons tan t s  a and ft. I t  is  e a s y  to see tha t  f o r  such a f ield fl has  a d i scon t in -  
u i ty  of  the  f i r s t  kind at y = h,  which  c o r r e s p o n d s  to a s o u r c e  of angu la r  m o m e n t u m  loca l i zed  on the cen t e r  
p lane  of  the flow.) 

In t eg ra t ing  the f i r s t  equat ion in (6) with the condi t ion (4) and including the fac t  that  the r e l a t i ve  ve loc i ty  
2V of the  bounding p l anes  y = 0 and y = 2h is  a s s u m e d  to  be f ixed,  we obta in  the  usual  equat ions  fo r  the ve lo -  
c i ty  p ro f i l e  and the tangent ia l  s t r e s s :  

_ _  a y V - - c o  , ~ = - - ,  
c 6v) = c o + ( V -  co) ---~--, "~ = t~oM h h (9) 

Co = • (V - -  co), k = k ( < t ~ > ) ,  M = M ( < O > ), 

As expec ted ,  the s t r e s s  r under  o t h e r w i s e  equal condi t ions  d e c r e a s e s  mono ton ica l ly  with i nc r ea s ing  ra t io  

= a / h .  

P l a n a r  Po i s eu i l l e  Flow.  In examining  the  flow in the  gapl ike channel  with width  2h under  the ac t ion of a 
cons tan t  p r e s s u r e  g rad ien t ,  it is  convenient  to in t roduce  the  d i m e n s i o n l e s s  quant i ty  

,10, 
V =  h z t d x , ~ l = - - ~  - ,  •  

in  which  (1) and (4) and o t h e r  condi t ions  a r e  wr i t t en  as  fol lows:  

' d d~v 

dn ( I i )  

= k • d_~_v dv v (~1~05, - - ~ 0  (xl~ 15 , O ~ p ~ p , .  
~: d~l dq 

In  view of the  to ta l  s y m m e t r y  r e l a t i v e  to the  p lane  ~? = 1, i t  i s  suff ic ient  to inves t iga te  the  solut ion (115 in the  

r eg ion  0 ~ ~ - 1. Af te r  a s ingle i n t eg ra t ion  we obtain  f r o m  (11) 

dZv 
dv i - -  ~, ,oM (0) ~ = ~. (12) M (~) vn 

When app roach ing  the  wal l ,  the  quant i ty  d2v/d~ 2 m u s t  a p p r o a c h  the  wMue - 1 ,  c h a r a c t e r i s t i c  of a pu re  d i s p e r s e d  
med ium.  F o r  th is  r e a s o n ,  f r o m  (125, we have fi = - p w M w ,  M w = M(p w). E l imina t ing  now f r o m  (12) the quan -  
t i ty  v and us ing the  e x p r e s s i o n  ob ta ined  fo r  fi, we a r r i v e  at  an equat ion fo r  p : 

dn k p ] M ' ( 1 - - n )  dn 
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L e t  p (1)  =pc. Examining (13) near the plane ~? = i, we obtain the approximation for i - ~7 << 1 

P~ - -  P "" ( I - -~ )~  d ~  ~ (1 - -~ )~ -~  

Mo 
a = poM--~-' p~ = p~M~. 

(14) 

From here it is evident that the function p (~) at the point 7? = i does not have singularities, if o- > 0, and it 
has a zero derivative if ~> i. 

Using  in  what  f o l l ows  Eq.  (3), we ob t a in  f r o m  (13) and  (14) the  fo l lowing  i m p l i c i t  d e p e n d e n c e  of  p on 77 : 

p ~ - - p ~ \  1 - - p  / - -  ~)~ 

2 1 - -9o  P~o 
U 

5 p~ (1 - -  p~)5/2  

(15) 

I t  f o l l o w s  f r o m  h e r e  tha t  dp/d~ = 0 at  ~7 = 1 on ly  if  P c  < 2 / 7  ~ 0.286, i . e . ,  p w  ~< 0.176, whi le  the  i n e q u a l i t y  
> 0 i s  a l w a y s  s a t i s f i e d  b e c a u s e  Pc < 1. The  quan t i t y  P c  i s  l e s s  than  p .  when P w  i s  l e s s  than s o m e  c r i t i c a l  , 

va lue  P w  and b e c o m e s  equa l  to p .  a t  P w  = P~v. I f  i t  i s  a s s u m e d  tha t  p .  = 0.50 (such a low va lue  of  p ,  i s  a p -  
. 

p a r e n t l y  j u s t i f i e d  s i n c e  c l o s e l y  p a c k e d  s y s t e m s ,  a p p e a r i n g  in the f low,  m u s t  be qu i te  l o o s e ) ,  then  Pw "~ 0.246 
(5). 

I f  P w  > Pw,  then  f o r  s o m e  va lue  ~7, = y . / h ,  the  func t ion  P(~7) a s s u m e s  a va lue  equa l  to  p . .  In  th i s  e a s e ,  
a zone  wi th  t h i c k n e s s  2(1 - V . ) h ,  in  w h i c h  p a r t i c l e s  a r e  l o c a t e d  in the c l o s e l y  p a c k e d  s t a t e ,  f o r m s  in the  c o r e  
of  the  f low.  

The quar~tity Pw, playing the role of a parameter in 'the problem, is naturally determined from one of 

the conditions 

I "~, 

<,o> = l'oOOd~, <9 > = ~,o(n)d~+(1 --~].)9., (16) 
6 o 

valid for Pw < Pw, 
presented in Fig. la. 

Integrating the first equation in (12) with conditions on v(~ ) in (ii), we obtain for 0 -< Pw < Pw 

11 I 

I P k~ 
(n) = v0 + dn, q = dn, = 

d M (p) ., Mw 
0 0 

* .< .< 
and  fo r  p w - P w P* 

Pw > Pw, respectively. The <p> dependence of the quantities Pw and 7?. at p, = 0.50 are 

l - - l ]  Vo + y ~ d n ,  o~<q<n,,  
v (n) = l 0 ~, 

[ v* -- v~ § j" 1 -n  d l'o M (o) n , < n < ' ,  

(17) 

(18) 

q = t' vO]) d~] + (1 - -  ~ , ) v , .  

From 'the curves in Figs. la it is not difficult to obtain inequalities for < p>, corresponding to those presented 

for p w- 

The effective viscosity #e, which is determined in a standard manner in experiments measuring the va- 

lues of the flow rate and pressure drop based on the idea that the moving suspension is homogeneous, is of 

great interest. This viscosity can be expressed in dimensionless variables as follows: 

~. = ~o/3r (19) 
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Fig. 3. Concentra t ion (a) and veloci ty  (b) p ro f i l e s  fo r  
flow in a capi l lary:  1-5) Pw = 0.05; 0.1; 0.2; 0.3 and 
0.4; p ,  = 0.50. 

The dependence of the ra t io  /Ze/# 0 on <p > with p .  = 0.50 and different  m~  is  shown in Fig. lb; Eq. (5) 
was used fo r  k w. I t  is  evident that #e in the s t ruc tu r ed  flow di f fers  g rea t ly  f r o m  the magni tude/z  =/z0M(< p >) 
of the v i scos i ty  with p a r t i c l e s  d i s t r ibu ted  uni formly  o v e r  the c r o s s  sect ion of the channel. 

The c h a r a c t e r i s t i c  p ro f i l e s  p 07) and v 07) at ~ = 0, cor responding  to p .  = 0.50 and different  Pw, a re  
p r e s e n t e d  in Fig. 2. I t  is evident that  t h ree  types  of concentrgstion dis t r ibut ions  a re  poss ib le .  F o r  Pw < 0.176, 
the d is t r ibut ion is  continuous toge the r  with i ts  f i r s t  der ivat ive;  for  0.176 < Pw < 0.246 (5), th is  der iva t ive  is 
discontinuous at n = 1; fo r  Pw > 0.246 (5), a zone with c losely  packed  p a r t i c l e s ,  which behaves  as  a r igid 
body, f o r m s  in the core  of the flow.* 

A x i s y m m e t r i c a l  Poiseui l le  Flow. F o r  flow in a cap i l l a ry  with a c i r cu l a r  c r o s s  section,  it is  na tura l  
to ir~troduce the same  d imens ion less  quant i t ies  (10), in te rpre t ing  h as the rad ius  of the capi l lary .  Ins tead of 
(11), we obtain in th is  case  

d--~ riM(p) = - - 1 ,  

dv 
v = --kw• --7- (n = 1), 

a n  

d M m) a i dn / ] =0; 

du 
- - = o  (n = o), o ~ p 4 , o , , .  
dn 

(20) 

and a single i~tegra t ion g ives  

d~ _ ~ , n~M (~) d ( j _ d o )  = ~. (21) 

We obtain the value of the  constant  fl, as  p rev ious ly ,  f r o m  the r equ i r emen t  that  as  the wall i s  app roa -  
ched, i . e . ,  for  ~ ~ 1, the equation of conserve:lion of m o m e n t u m  of the suspension mus t  t r a n s f o r m  continuous-  
ly i~to the equation for  a pure  d i s p e r s e d  medium.  As a resu l t ,  we obtain f r o m  (20) and (21) fl = -  P w ( M w - 1 ) .  
El iminat ing  now the var iab le  v f r o m  (21) and using the express ion  fo r  fi, we obtain the equation 

d,o _ 2pw(Mw--l)  M ,  M! = - d M  , (22) 
dn pM'n 3 do 

whose solution in impl ic i t  f o r m  with M(p ) f r o m  (3) has  the f o r m  

In 1--pl--Pw ( 9 - - p w ) = - ~ p < v ( w - - l )  - ~ -  1 . (23) 

The quantity p (7) represer~ts  a monotonical ly  decreas ing  function, with a s ingular i ty  at 77 = 0. Fo r  th is  
r e a son ,  in con t ras t  to the plane Po iseu i l t e  flow, in th i s  case ,  only concentra t ion p ro f i l e s  of the th i rd  type a re  
rea l ized :  fo r  a r b i t r a r i l y  smal l  <p> ,  a "rod" of c lose ly  packed  p a r t i c l e s  with rad ius  ~?. = ~?,(< p >) f o r m s  in 
the core  of the flow. The equation for  de te rmin ing  the dependence of the p a r a m e t e r  Pw on <p >, replacing 
(16), has  the f o r m  1 

( p )  2 = n~P. q- 2 .f nP (n) dn. (24) 

* We emphas i ze  that  the s y m m e t r y  of the flow re la t ive  to the plane ~? = 1 does not r equ i re  that  the der iva t ive  
dp/d~ vanish  on it. An analogous r e q u i r e m e n t  on the der iva t ive  dv/d~ follows not f r o m  the fact  of s y m m e t r y  
in i t se l f ,  but f r o m  the n e c e s s i t y  tha t  the s t r e s s  va~_tsh on this  plane.  
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Fig. 4. Dimensionless  velocity prof i les  in 
capi l lary  with <p > = 0.34; 1-3) experiment 
in [1] with ~t = 0.056 and total flow ra tes  
Q = 0.711.10-2; 3.56"10 -2 and 7.11-10 -2 cm3/ 
sec; 4, 5 ) t h e o r y  for  m n  = 0; 0.2; p ,  =0.50; 
the value < p  > = 0.34 cor responds  to Pw ~ 
0.175 and W, "~ 0.45 

The dependences of Pw and ~ , o n  <p >, following f rom (24) with p ,  = 0.50, are  also presented  in Fig. la. 

Integrat ing the f i r s t  equation in (21) using the conditions in (20), we have instead of (17) o r  (18)the 
re la t ions  

v (~q) = 

i 

~ ,  = Vo + 2 . j  M (p) ' 

1 

1 f ~d~l 
lq 

1 

2 M w 

(25) 

The concentrat ion and velocity prof i les ,  descr ibed  by Eqs. (25) and (23) at p ,  = 0.50 and ~r = 0, are  i l lus-  
t r a t ed  in Fig. 3. 

The effective viscosi ty  #e, measu red  in exper iments  with capi l lary visco s imete rs ,  is expressed  in 
t e r m s  of the d imensionless  flow ra te  of the suspension q f rom (25) by the relat ion 

~e = ~o~/8q, (26) 
which rep laces  (19). The dependences ~e/~0 as a function of < p >, corresponding to k w f rom (5), p ,  = 0.50 
and different values of m n ,  a re  p resen ted  in Fig. lb. 

It is  easy  to see that the re  a re  two basic competing fac to rs ,  which cause ~e to differ f rom the viscosi ty  
# = # 0M(< p >) for  a flow of a uniform suspension. F i r s t  of all, the s t ruc ture  formation investigated leads to 
depletion of pa r t i c l e s  in regions  of the flow near  the wall, which dec reases  the observed  effective viscosity.  
Second, it leads to the manifestat ion of pseudoplast ic  p roper t i e s  of the suspension,  i .e. ,  to the format ion of 
zones in the core  of the flow moving as a solid body, which, on the cont rary ,  i nc reases  Pe. 

On the whole, for  low average  concentra t ions  and for  sufficiently fine par t ic les ,  the concentrat ion p r o -  
file a lmost  over  the entire t r a n s v e r s e  c r o s s  section of the channel is near ly  uniform, while the velocity p r o -  
file is nea r ly  parabol ic ;  as <p > and n inc rease ,  the velocity profi le becomes  increas ingly  blunt, going over  
into the velocity profi le  cha rac t e r i s t i c  fo r  a pseudoplast ic  medium. This behavior ag rees  with the exper imen-  
tal facts  [1, 3]. 

F igure  4 i l lus t ra tes  the velocity prof i les  for  flow in a capi l lary  in the relat ive coordinates ~?, v / v ,  for 
p ,  = 0.50 and <p >= 0.34 for  different values of ran.  The f igure also p resen t s  some resu l t s  of the experiment  
in [1]. Analysis  of the data in Fig. 4, as well as o ther  analogous data, shows the sa t i s fac tory  correspondence 
between theory  and experiment.* 

F r o m  the analys is  pe r fo rmed  above it follows that the appearance of a nonuniform concentration d i s t r i -  
bution is due to the necess i ty  of conserving angular  momentum of the d i spersed  medium in the flow and, in 
addition, in 'the final analys is ,  a distr ibution is establ ished for  which the average flow of angular momentum 
vanishes.  This opens up the fundamental  possibi l i ty  for  actively affecting the s t ructure  of flows by ar t i f ic ia l ly  

* We emphasize  that 'the indicated agreement  with exper iment  concerns  only velocity prof i les  in a one-d imen-  
sional flow of suspensions with neutral  buoyancy of pa r t i c les ,  but not concentrat ion prof i les ,  for which there  
are  p resen t ly  severa l  cont radic tory  facts .  In par t i cu la r ,  it is  a s se r t ed  in [1, 3] that the par t ic le  concent ra-  
t ion distr ibution over  the c r o s s  section of the channel is nea r ly  uniform. 
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changing this flux. The lat ter  can be achieved by placing the suspension of dipole part icles in a specially 
formed external field, giving r ise to independer~t rota:tion of part icles due to the action of external force 
couples on them. 

In conclusion, we note that above we neglected, f i rs t  of all, inertial effects, giving rise to t ransverse 
migration of part icles in nonuniform flows and, second, fluctuation effects, pr imari ly  translational and rota-  
tional Brownian motion. The f irs t  factor is important for suspensions of sufficiently large part icles,  espe- 
cially if the part icle density and the density of the dispersed medium differ, and the second is important for 
fine colloidal particles.  It is clear that both factors can affect the form of the stationary concentration dis- 
tributions and for this reason must be taken into account in future theory. 

NOTATION 

a, particle radius; c, velocity of the suspension; c 0, slipping velocity at the wall; e, tensor of the de- 
formation rates; h, one-half the slit width or capillary radius; I, unit tensor; k, a coefficient in (4) and (5); 
M, function introduced in (1)-(3); m, a constant in (5); n, normal coordinate; p, pressure; q, dimensionless 
flow rate; V, one-haK the relative velocity of plates in a Couette flow; v, dimensionless velocity; v0, dimen- 
sionless slipping velocity; v., dimensionless velocity of a closely packed core; x and y, longitudinal and 
transverse coordinates; y., coordinate of the closely packed core; a, fl, integration constants; F, a function 
introduced in (1)-(3); 7, tensor of angular stresses; 77 = y/h; 77, = y./h; ~4 = a/h; #o, #e, viscosity of the liquid 
phase and the effective viscosity of the suspension; p, volume concentration of particles; < p >, p w, P c, 
average concentration in the flow, the concentration at the wall, and the concentration at the center; p., con- 
centration of the closely packed state; P~v, critical concentration at the wall, corresponding to the appearance 
of a closely packed core with flow in a planar gap; ~, stress tensor; a, a parameter in (14) and (15); and T, 

tangential stress. 
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SETTLING OF A BIDISPERSE SUSPENSION 

]9. S. Endler UDC 66. 063.94 

The influence of the fractional composition on the settling velocity of a bidisperse suspension 
is investigated theoretically. The average particle radius of a settling bidisperse suspension 
is calculated. 

Monodisperse suspensions are rarely encountered in practical engineering, and a disperse phase 
usually consists of a mixture of particles of different sizes. Despite this, considerably fewer reports have 
been devoted to the investigation of the motion of polydisperse than of monodisperse suspensions. 

The force of interaction between the liquid and disperse phases of a polydisperse suspension of moderate 
concentration was determined in [i] using rigorous statistical methods. Without additional considerations, 
however, one cannot determine from [i] the velocities of motion of the separate fractions needed to study the 
settling of a polydisperse suspension. 

The settling of multifraction suspensions of fine particles of equal density was investigated theoretically 
in [2-6] on the basis of various assumptions about the form of the dependence of these velocities on the frac- 
tional composition and the total volumetric concentration of the disperse phase. Here, by analogy with the 
monodisperse case, the dependence of the settling velocities of the individual fractions on the fractional com- 
position and the total concentration was assigned in [2, 3] in power-law form, where the porosity of the sus- 
pension served as the base while the exponent depended on the composition. A modified cell model was used 
for these purposes in [4], and data of [7] on the magnitude of the force of interaction between a filtering stream 
and a stationary, polydisperse granular bed were used in [5, 6]. The settling of bidisperse suspensions of par- 
ticles of equal density at low Reynolds numbers was investigated experimentally in [2-5, 8-].1]. 

Let us consider the uniform gravitational settling of a bidisperse suspension of moderate concentration. 
The continuous phase consists of an incompressible Newtonian liquid with a ~dseosity #0 and density do, while 
the disperse phase consists of a mixture of two fractions of spherical particles with radii a ' and a " and a 
density d~. The volumetric concentrations of the particles a ' and a " and of the entire disperse phase are p ', 
p ", and p = p ' + p ", respectively. The Reynolds numbers characterizing both the flow over individual par- 
ticles and the motion of the phases on the average are small compared with unity. For determinacy, let a " > 
a ' and let the distribution of the concentrations p ' and p " be uniform. 

Using [i], we represent the force of interaction of each fraction with the continuous phase, due to the 
action of viscous-friction forces~ as the sum of two terms: the first, allowing for the constrained nature of 
the settling, coincides with that of [i]; the second characterizes the interaction between the fractions, due to 
the difference between the settling velocities of the fractions. Then the equations of conservation of mass and 
momentum describing the settling of the fractions have the form 
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