FORMATION OF STRUCTURE IN A FLOW OF A
SUSPENSION OF NEUTRALLY FLOATING PARTICLES

Yu. A. Buevich UDC 532.529.5

It is shown that in a flow with a nonuniform vorticity, the concentration field of the suspen-
sion is also nonuniform. Stationary Couette and Poiseuille flows in a flat gap and in a capil-
lary are examined in detail.

It is well known that when a suspension of fine particles flows in a channel, there is a redistribution
of particles over the cross section of the channel, as a result of which an inhomogeneous concentration dis-
tribution of the suspension forms in the flow (see, for example, [1-3]). The latter has a large effect on the
observed properties of the flow, for example, on the values of the effective viscosity, measured in capil-
laries with viscosimeters,

At the present time neither the detailed characteristics of stationary concentration distributions, es~
tablished under different conditions, nor the fundamental methods for determining them experimentally, nor
even the basic physical reasons responsible for the formation of structure are known. To explain this forma-
tion from a qualitative point of view, assumptions are usually made about transverse migration of individual
particles in nonmiform shear flows, i.e., the so-called Segre —Silberberg effect [4], as well as about the in-
teraction of particles with the walls bounding the flow. The indicated migration is due to the influence of
inertial effects leading to the appearance of a "lifting" force acting on a single particle and preportional o the
vector product of its angular rotational velocity and its translational velocity relative to the fluid (see the re-
views in [3, 5] and the references therein). However, arguments of this kind are not directly applicable to
flow of a suspension, since they do not take into account the collective interaction of the system of suspended
particles and, in particular, the screening effect of all particles on any isolated particle. In addition, dis-
tinct structure formation also occurs when the average phase velocities of the suspension coincide, i.e., the
lifting forces generally vanish [1, 3].

The known attempts to describe the real velocity and concentration profiles in one-dimensional station-
ary flows of suspensions have the typical phenomenological character. They are usually based on postulation
of some extremal principle (for example, principle of minimum dissipation of energy in the flow [6, 7]) or
they are related to a priori and, generally speaking, unjustified introduction of an asymmetric effective
stress tensor, as well as reversible and irreversible processes of aggregation, diffusion, and so on using
the methods of linear thermodynamics of irreversible processes [8, 9].

In what follows, the formation of structure in a suspension with a nonuniform shear flow is examined
using the general continuum mechanics of concentrated dispersed systems, developed in [10-12]. For simpli~
city, the analysis is restricted to stable uniform-density suspensions of identical fine spherical particles in
the absence of aggregation and any inertial and fluctuation effects. In addition, it is demonstrated that the
basic physical mechanism for the formation of structure may not be related to such effects at all, but rather
to the necessity of conserving the internal angular momentum of the continuous phase of the suspension, which
must be viewed as a completely independent property of the flow [13].

Equations and Boundary Conditions. The system of equations for conservation of mass, momentum,
and angular momentum of the continuous and dispersed phases of the suspension, which we assume fo be in-
compressible and examine as coexisting interpenetrating continua, are formulated in [10-12]. These equa-
tions serve to determine the bullk concentration of particles, the pressure of the dispersed medium, the
average phase velocities of the suspension and their angular momenta (for the discrete phase, the internal
angular momentum is proportional to the angular velocity of the particles). Here we examine only one-
dimensional stationary flows, in which all of these quantities, except for the pressure, are independent of
time and the coordinate x in the direction of motion, while Vp is constant andoriented along x. Ifthe particies
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have zero buoyancy, then, neglecting the influence of the interphase interaction forces on the conservation of
angular momentum [10-12]}, the influence of the external mass field can be neglected, since the external forces
can be easily included in the effective pressure. If the quantity |Vp| is not very large, we can restrict the
analysis to the single-velocity model, according to which the phase velocities are identical, which is supported
by observations [1,-3]. We also assume that there are no external force couples. Then the equations of con-
servation are considerably simplified. The equation of conservation of momentum of the suspension as a whole
and the equation of conservation of angular momentum of its continuous phase assume the form

vo=0, yy=0, 6 =—pl+ 2uM (o) e{c},
dc; dej
ij 6x,~

’

v = 2a%poT (p) e{rot c}, e{c} = —;— H

where M(p) and I"(p) are monotonically increasing functions equal to unity at p = 0 and the operator V involves
differentiation only with respect to the transverse coordinates. In addition to Egs. (1), in the case examined,
the equation of conservation of internal angular momentum of the dispersed phase, which must be used to de-
termine the angular velocity of the particles, is also not an identity; we shall not examine this equation here.

For moderately concentrated suspensions (p < 0.20-0.25), the quantities M and I' were calculated based
on the method [10-12] in [14]:

T'(p) = M(o) = (1—5p/2)74, (2)
and for suspensions with high concentration, numerical calculations of M are available for different forms of
the binary particle distribution function [15]. In what follows, we shall use the well-known simple approxima-
tion

T (o) =M (o) = (1—0) ™", (3)

close to (2) for suspensions with moderate concentration, but not having in contrast to (2) singularities in the
interval 0 =p < 1.

For flows of the type examined, the equation of conservation of internal angular momentum of the conti-
nuous phase, characterizing the intensity of local circulatory motions of the dispersed phase due to rotation
of the particles, essentially becomes degenerate in the sense that this moment itself does not enter into the
indicated equation. For this reason, the latter circumstance provides some additional relation, imposed on
the velocity and concentration fields. We emphasize that both equations in (1) are completely equivalent and,
as will be shown in what follows, without the second equation in (1) it is impossible to explain the formation
of structure of a suspension just as without the analogous equation it is impossible to describe, for example,
the well-known gyromagnetic effect [13].

<P> d - T‘* J‘f_' / / \
. , )K//"—-a) /—T]* Fo // by |
, y \ 5l // i
028 (1A 95 / ///
( 7 Y 4 N /
/ ’ h \\ z / / .
/ // e . ~
/ \\ 7 // J’/
0 25 g7 o 925 Pu

Fig. 1. Average volume concentration <p> and dimen-~
sionless distance from the wall to the closely packed
core Nk and 1—nx (for atwo-dimensional and axisym-
metrical problems, respectively) (a) and two dimension-
less viscosity (b) as a function of the particle concen-
tration at the wall py; the continuous curves are for a
flow in a capillary and the dashed curves are for aflow
in a flat gap; the point show the function we/ K==
py) "2, 1-3) mn = 0; 0.1 and 0.2; px = 0.50.
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In mechanics of suspensions, the equations of conservation of internal angular momenta of phases (or
conservation of angular momenta), first rigorously obtained in [10], are usually not taken into account. (The
only example of the effective use of these equations known to the author occurs in [16], where the formation
of structure in a flow of a dilute suspension of spherical magnetic dipoles in an external magnetic field was
investigated.) Instead, attempts are often made to include the influence of internal vorticity on the average
(observed) characteristics of the flow by introducing into the effective stress tensor an antisymmetrical part
[8, 17-19]. As shown in [11, 12], by averaging over the configuration ensemble of the system of particles in
the dispersed phase, such attempts are inadequate. T

For the necessary conditions that must be imposed on the solution, we shall use the conditions following
from the requirement of symmetry of the flow examined as well as the double inequality 0 = p = px. On solid
walls, a boundary condition of the third kind must be given for the tangential component of the velocity. This
condition appears due to the impenetrability of the walls for solid particles and the resulting formation of a
layer with thickness of the order of a near the wall, in which the conceniration rapidly drops from py, at its
outer boundary to zero at the wall itself [12]. We have

=kt lC 0, hy = Eloy), @
dn

where n is the coordinate measured from the wall along the normal to it.

If the indicated thin layer is modeled using the idea that there is a layer of thickness ma filled with a
pure dispersed medium and separating the wall from the suspension itself, then it can be shown that i

by =mM,—1), M, = MI(p,) (5)

The relations presented are sufficient to analyze the formation of structure in flows of the type examined
with negligibly low interphase slipping velocities.

Coustte Flow. In this case, Egs. (1) after a single integration assume the form (here and in what follows
we set M =" in accordance with (2) or (3))

de d3¢
M ==y ,M 9 =P
)y = oM =P (6)
where @ and 8 are integration constants. Eliminating ¢, we have from (6)
do B M . dM ("
dy a oM dp

Equation (7) has a single-parameter family of solutions, satisfying the condition p(0) = py; if we use
Eq. (3), then it is determined in implicit form by the relation

— o) = (8)

In

T The inadequate understanding of the possible ways to take into account and describe internal vorticity in
flows of both single-phase and dispersed systems, unfortunately, is very widespread, which is indicated, in
particular, by the discussion in [20,21], raised again by Nikolaevskii et al. {17, 18]. For this reason, it is
useful to stop here to consider this in greater detail. The conclusion that there exists antisymmetrical stres-
ses follows automatically if in obtaining the equations for the macroscopically observed motion by averaging
with respect to spatial objects it is assumed that the results of averaging over areas differs from the result
obtained by averaging over a small physical volume and, moreover, depends on the orientation of the areas.
Actually, this conclusion is a direct result of the indicated hypothesis. Using the procedure of spatial aver-
aging, it is impossible to determine the degree to which this hypothesis is valid in principle and for this rea-
son discussions of whether or not antisymmetrical stresses are present in the flow is a clear example of pseu-
doscientific scholastics. However, a unique negative answer to this question can be obtained using the more
general procedure of ensemble averages. As demonstrated in [11, 12}, antisymmetrical stresses in suspen-
sions of spherical particles appear only in the presence of external force couples acting on the particles.

i This method is presented in detail in the following preprint: Yu. A. Buevich, B. S. Endler, and I. N. Shchel-
kova, "Continuum mechanics of monodispersed suspensions. Rheological equations of state, " Preprint No. 85,
Institute of Applied Mechanics, Academy of Sciences of the USSR, Moscow (1977).
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Fig. 2. Concentration (a) and velocity (b) profiles for
flow in a planar gap: 1-4) pw = 0.1; 0.2; 0.3; and 0.4;
px = 0.50,

From the symmetry of the flow relative to the central plane y =h, it is evident that the function p (y)
must be symmetrical relative to the point y = h, i.e., it is necessary to assume that 8 = 0; then p = <p> =
const and structure formation does not occur. Physically this is completely understandable because in the
usual simple shear flow (with p = <p>) the vorticity field by definition is uniform, so that the tensor of an-
gular stresses ¥ vanishes, while the second equation in (1) is an identity. (The concentration field described
for g # 0 by the function p (v) from (8) in the region 0 = y < h and its even continuation into the regionh =y =
2h is not a solution of Eq. (6) with constants o and B. It is easy to see that for such a field 8 has a discontin-
uity of the first kind at y = h, which corresponds to a source of angular momentum localized on the center
plane of the flow.)

Integrating the first equation in (6) with the condition (4) and including the fact that the relative velocity
2V of the bounding planes y = 0 and y = 2h is assumed to be fixed, we obtain the usual equations for the velo-
city profile and the tangential stress:

V—c

W)=t VgL, vmpor L 2

(9)
o=k (V—cg), k=E({pD), M=M({p))
As expected, the stress T under otherwise equal conditions decreases monotonically with increasing ratio

® = a/h.

Planar Poiseuille Flow. In examining the flow in the gaplike channel with width 2h under the action of a
constant pressure gradient, it is convenient to introduce the dimensionless quantity

dp.
dx

.

oY =8 10
- , M= o= (10)

h

in which (1) and (4) and other conditions are written as follows:

d do d d
Z M) — )\ =—1, —{oM
( (0) dn) an (p {0) i

dn ) =0 (11)

d
J:T:O =1, 0<p< s

o= k22 (n=0),
dn
In view of the total symmetry relative to the plane n =1, it is sufficient to investigate the solution (11) in the
region 0 = n = 1. After a single integration we obtain from (11)

dzy
dn?

dv
M) ——=1—m, oM (p) = . (12)
N
When approaching the wall, the quantity d2v/dn? must approach the value —1, characteristic of a pure dispersed
medium. For this reason, from (12), we have g = —pyMyw, My = Mo w). Eliminating now from (12) the quan-
tity v and using the expression obtained for g, we arrive at an equation for p:

ép_:( PuMy _1) M MM (13)
dn o M(QQ—m) dn
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Let p (1) = po. Examining (13) near the plane n = 1, we obtain the approximation for 1 —7n « 1

0. —p ~ (1—n)°, j ~ (et
1 (14)
g =

M,
m‘c'_a P = prw

From here it is evident that the function p (1) at the point 7 = 1 does not have singularities, if ¢ > 0, and it
has a zero derivative if ¢> 1,

Using in what follows Eq. (3), we obtain from (13) and (14) the following implicit dependence of p on 7:

— — 1/
Pc—P (1 pw) Pc:(l_n)G’

0__2_ 1——95 - Puw
5 e 0 (1—p)”

It follows from here that dp/dy = 0 at 1 = 1 only if p c < 2/7 = 0.286, i.e., /Jw~ 0.176, while the ineguality

0 > 0 is always satisfied because pe < 1. The quantity pc is less than p« When Py is less than some critical
&

value pw and becomes equal to px at py = pw If it is assumed that px = 0.50 (such a low value of p* is ap-

parently justified since closely packed systems, appearing in the flow, must be quite loose), then pW 0.246

(8).

If py > p;(v, then for some value n* =y /h, the function p(n) assumes a value equal to px. In this case,

a. zone with thickness 2(1 —nx)h, in which particles are located in the closely packed state, forms in the core
of the flow.

The quantity p,, playing the role of a parameter in the problem, is naturally determined from one of
the conditions

1' Ny

Cod =Jomdn (o) ={pmdn+(1—no, (16)
: 0 0
valid for py < pé‘v, Pw > p’;v, respectively. The <p> dependence of the quantities py and nx at px = 0.50 are
presented in Fig. 1a.

Integrating the first equation in (12) with conditions on v(n) in (11), we obtain for 0 = py, < p";,

n 1

1 K
U(']):UO'T‘SM(—;]M] g=\v{ndn, v,==xn (7
t 0 w
and for p:VSpWSp*
{ n
§ e,
| le 7]<7]>,u
v = " (18)
v*:vo+j—(‘5)~dn, e <n<1,
L 0

%

v(n)dn + (1 —ny) 0,

Sy 3

From the curves in Figs. 1a it is not difficult to obtain inequalities for < p>, corresponding to those presented
for py-

The effective viscosity u,, which is determined in a standard manner in experiments measuring the va-
lues of the flow rate and pressure drop based on the idea that the moving suspension is homogeneous, is of
great interest. This viscosity can be expressed in dimensionless variables as follows:

P = Ho/3l] (19}
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Fig. 3. Concentration (a) and velocity (b) profiles for
flow in a capillary: 1-5) py = 0.05; 0.1; 0.2; 0.3 and
0.4; px = 0.50,

The dependence of the ratio pe/i;on <p> with px = 0.50 and different mw is shown in Fig. 1b; Eq. (5)
was used for ky. It is evident that u, in the structured flow differs greatly from the magnitude 4 = ugM(<p >)
of the viscosity with particles distributed uniformly over the cross section of the channel.

The characteristic profiles p (n) and v(n) at » = 0, corresponding to px = 0.50 and different py,, are
presented in Fig. 2. It is evident that three types of concentration distributions are possible. For py <0.176,
the distribution is continuous together with its first derivative; for 0.176 < py, < 0.246 (5), this derivative is
discontinuous at n =1; for py > 0.246 (5), a zone with closely packed particles, which behaves as a rigid
body, forms in the core of the flow.*

Axisymmetrical Poiseuille Flow. For flow in a capillary with a circular cross section, it is natural
to introduce the same dimensionless quantities (10), interpreting h as the radius of the capillary. Instead of
(11), we obtain in this case

1 d do d d 1 do ) :

—— ('nM(p)—) =—1 ——[TﬁpM(p)-— (———U)J =0,
n dy dn dn dn \ m dn (20)

dn dn
and a single integration gives
1 dv
SELE R R A

M an 5 e () i\ p (21)

We obtain the value of the constant 3, as previously, from the requirement that as the wall is approa-
ched, i.e., for n— 1, the equation of conservation of momentum of the suspension must transform continuous-
ly into the equation for a pure dispersed medium. As a result, we obtain from (20) and (21) B = = p w(Mw -1).
Eliminating now the variable v from (21) and using the expression for g, we obtain the equation

do M . dM

=20, My — 1) ———, M =, : (22)
dn oM dp
whose solution in implicit form with M(p) from (3) has the form
1—
In — (0 —pu)=— 0 My — 1) [ — — 1 (23)
-l p 5 n?

The quantity p (n) Tepresents a monotonically decreasing function, with a singularity at n = 0. For this
reason, in contrast to the plane Poiseuille flow, in this case, only concentration profiles of the third type are
realized: for arbitrarily small <p>, a "rod" of closely packed particles with radius nx = nx(<p>) forms in
the core of the flow. The equation for determining the dependence of the parameter py on <p>, replacing
(16), has the form .

(0> =120, +2 [ mp () dn. (24)
Ny .
* We emphasize that the symmetry of the flow relative to the plane n = 1 does not require that the derivative
dp/dn vanish on it. An analogous requirement on the derivative dv/dn follows not from the fact of symmetry
in itself, but from the necessity that the stress vanish on this plane.
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K \°A§$ 5 Fig. 4. Dimensionless velocity profiles in
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The dependences of pyw and nxon <p >, following from (24) with px = 0.50, are also presented in Fig. la.

Integrating the first equation in (21) using the conditions in (20), we have instead of (17) or (18) the
relations

—

1

v 1 d
v*I:Uo"F—‘Yn—n— 0N <<,

: 2 J M)’
v(n) = | L ;* (25)
ndn x k
Uy - ——— , M << 1, =e——
! o 1 9 SVM({)) SRS Uy 2 M,

1
g =mniv, + 2n Sﬂv () dn.

The concentration and velocity profiles, described by Egs. (25) and (23) at px = 0.50 and » = 0, are illus-
trated in Fig. 3.

The effective viscosity 4, measured in experiments with capillary viscosimeters, is expressed in
terms of the dimensionless flow rate of the suspension g from (25) by the relation

Me = WoTt/84, (26)

which replaces (19). The dependences e/l as a function of < p >, corresponding to ky from (5), px = 0.50
and different values of mw, are presented in Fig. 1b.

It is easy to see that there are two basic competing factors, which cause ue to differ from the viscosity
# = ugM(< p>) for a flow of a uniform suspension. First of all, the structure formation investigated leads to
depletion of particles in regions of the flow near the wall, which decreases the observed effective viscosity.
Second, it leads to the manifestation of pseudoplastic properties of the suspension, i.e., to the formation of
zones in the core of the flow moving as a solid body, which, on the contrary, increases ps.

On the whole, for low average concentrations and for sufficiently fine particles, the concentration pro-
file almost over the entire transverse cross section of the channel is nearly umiform, while the veloeity pro-
file is nearly parabolic; as <p> and » increase, the velocity profile becomes increasingly blunt, going over
into the velocity profile characteristic for a pseudoplastic medium. This behavior agrees with the experimen-
tal facts [1, 3].

Figure 4 illustrates the velocity profiles for flow in a capillary in the relative coordinates 1, v/vy for
px = 0.50 and <p>= 0.34 for different values of mn. The figure also presents some results of the experiment
in [1]. Analysis of the data in Fig. 4, as well as other analogous data, shows the satisfactory correspondence
between theory and experiment.*

From the analysis performed above it follows that the appearance of a nonuniform concentration distri-
bution is due to the necessity of conserving angular momentum of the dispersed medium in the flow and, in
addition, in the final analysis, a distribution is established for which the average flow of angular momentum
vanishes. This opens up the fundamental possibility for actively affecting the structure of flows by artificially

* We emphasize that the indicated agreement with experiment concerns only velocity profiles in a one-dimen-
sional flow of suspensions with neutral buoyancy of particles, but not concentration profiles, for which there
are presently several contradictory facts. In particular, it is asserted in [1, 3] that the particle concentra-
tion distribution over the cross section of the channel is nearly uniform.
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changing this flux. The latter can be achieved by placing the suspension of dipole particles in a specially

formed external field, giving rise to independent rotation of particles due to the action of external force
couples on them.

In conclusion, we note that above we neglected, first of all, inertial effects, giving rise to transverse
migration of particles in nonuniform flows and, second, fluctuation effects, primarily translational and rota-
tional Brownian motion. The first factor is important for suspensions of sufficiently large particles, espe-
cially if the particle density and the density of the dispersed medium differ, and the second is important for
fine colloidal particles. It is clear that both factors can affect the form of the stationary concentration dis-
tributions and for this reason must be taken into account in future theory.

NOTATION

a, particle radius; ¢, velocity of the suspension; ¢, slipping velocity at the wall; e, tensor of the de-
formation rates; h, one-half the slit width or capillary radius; I, unit tensor; k, a coefficient in (4) and (5);
M, function introduced in (1)-(3); m, a constant in (5); n, normal coordinate; p, pressure; ¢, dimensionless
flow rate; V, one-half the relative velocity of plates in a Couette flow; v, dimensionless velocily; vy, dimen-
sionless slipping velocity; v« , dimensionless velocity of a closely packed core; x and y, longitudinal and
transverse coordinates; yx , coordinate of the closely packed core; «, B, integration constants; I', a function
introduced in (1)-(3); ¥, tensor of angular stresses; 1 =y/h; Nx = yx/h; % = a/h; py, be, viscosity of the liquid
phase and the effective viscosity of the suspension; p, volume concentration of particles; <p>, pyw, P o>
average concentration in the flow, the concentration at the wall, and the concentration at the center; px, con-
centration of the closely packed state; pv , critical concentration at the wall, corresponding to the appearance
of a closely packed core with flow in a planar gap; o, stress tensor; ¢, a parameter in (14) and (15); and 7,
tangential stress.
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SETTLING OF A BIDISPERSE SUSPENSION

B. 8. Endler UDC 66.063.94

The influence of the fractional composition on the settling velocity of a bidisperse suspension
is investigated theoretically. The average particle radius of a settling bidisperse suspension
is calculated.

Monodisperse suspensions are rarely encountered in practical engineering, and a disperse phase
usually consists of a mixture of particles of different sizes. Despite this, considerably fewer reports have
been devoted to the investigation of the motion of polydisperse than of monodisperse suspensions.

The force of interaction between the liquid and disperse phases of a polydisperse suspension of moderate
concentration was determined in [1] using rigorous statistical methods. Without additional considerations,
however, one cannot determine from [1] the velocities of motion of the separate fractions needed to study the
settling of a polydisperse suspension.

The settling of multifraction suspensions of fine particles of equal density was investigated theoretically
in [2-6] on the basis of various assumptions about the form of the dependence of these velocities on the frac-
tional composition and the total volumetric concentration of the disperse phase. Here, by analogy with the
monodisperse case, the dependence of the settling velocities of the individual fractions on the fractional com-
position and the total concentration was assigned in [2, 3] in power-law form, where the porosity of the sus-
pension served as the base while the exponent depended on the composition. A modified cell model was used
for these purposes in [4], and data of {7] on the magnitude of the force of interaction between a fillering stream
and a stationary, polydisperse granular bed were used in [5, 6]. The settling of bidisperse suspensions of par-
ticles of equal density at low Reynolds numbers was investigated experimentally in [2-5, 8-11].

Let us consider the wniform gravitational settling of a bidisperse suspension of moderate concentration.
The continuous phase consists of an incompressible Newtonian liquid with a viscosity u, and density d,, while
the disperse phase consists of a mixture of two fractions of spherical particles with radii ¢' and 2" and a
density d;. The volumetric concentrations of the particles @' and a " and of the entire disperse phase are p',
p",andp =p!'+p", respectively. The Reynolds numbers characterizing both the flow cover individual par-
ticles and the motion of the phases on the average are small compared with mnity. For determinacy, let a™ >
a' and let the distribution of the concentrations p' and p " be uniform.

Using [1], we represent the force of interaction of each fraction with the continuous phase, due to the
action of viscous-friction forces, as the sum of two terms: the first, allowing for the constrained nature of
the settling, coincides with that of [1]; the second characterizes the interaction between the fractions, due to
the difference between the settling velocities of the fractions. Then the equations of conservation of mass and
momentum describing the settling of the fractions have the form
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